
A Complete
Guide to EKS Cost
Optimization
Including 13 best practice considerations

 “The best way to predict the future is to create it.”
--Abraham Lincoln

1. Overview 2

2. EKS cost optimization best practices

3. Optimizing EKS Costs using real-time
 auto-sizing

4. Summary

4

36

37

Understand your spend

Understand your usage

Efficient node & pod auto-scaling

Node Taints And Tolerations

Container Registry & Images

Spot Instances

Pod Disruption Budgets

AWS Instance Scheduler

AWS Graviton instances

GP3 volumes

AWS Commitment Based Discounts

Tuning Recommendations

Right size resources

4

6

9

10

12

14

17

20

22

23

24

28

31

Table of content

1

Overview

Overview
Amazon’s Elastic Kubernetes Service (EKS) is a managed
Kubernetes service offering that enables you to run
Kubernetes on AWS infrastructure. EKS automates
management, availability and scalability of the Kubernetes
control plane, and lets you run your applications either on AWS
EC2 instances or on AWS fargate. (AZs). As usage of EKS has
skyrocketed, EKS cost optimization has become a key part of
an organization’s over cloud cost optimization strategy.

EKS has significantly grown in usage and popularity over
recent years, as consumption of cloud based Kubernetes
offerings has grown recently. A study from Datadog in 2021
suggests that almost 90% of Kubernetes users leverage
cloud managed Kubernetes offerings, instead of running self
managed clusters, a 20% increase compared to the numbers
in 2020.

2

As EKS adoption has grown, so has the enterprise spend
on containers and Kubernetes on AWS. EKS makes it very
easy to spin up new Kubernetes clusters as well as to
scale existing Kubernetes clusters. This makes it easy to
overspend on your EC2 instances. And if you don’t have
a proper cost optimization framework in place, costs can
quickly escalate consuming a major portion of your overall
public cloud budget. While AWS charges a very small amount
for the EKS control plane, the real cost comes from the EC2
instances that get used as worker nodes for your clusters.

This guide will educate you on the various best practices for
EKS cost optimization for your AWS EKS environment.

3

EKS cost optimization best practices

The first and most
important step in building a
cost optimization strategy
for your EKS environment
is getting a clear and deep
visibility into your existing
spend. A lack of visibility
into your current spend
that is specific to your EKS
clusters often contributes
to an underestimation
of EKS costs. Make sure
you have invested in the
right tooling that gives you
granular visibility into your
EKS spend.

Understand your
spend

Use AWS billing console – The AWS Billing console
is designed to provide visibility into the costs of your
current consumption. However, the way the AWS Billing
console works, there usually is a lag between your
current usage vs the billing data because AWS Billing
Console data is updated only once a day. If you need to
get more instantaneous visibility into your usage and
cost data, for example to to debug any runaway costs,
you need to use better tooling.

4

Cost Explorer will enable you to get down to the unit cost
at per node and per cluster level, using their resource type
and tag based filtering mechanism. For example, you can
tag all worker nodes of a specific class of EKS clusters with
a specific label, then use that label to identify the costs of
those clusters. You can then build aggregate cost reporting
at cluster, team, org level.

One limitation with the AWS Cost Explorer is that it refreshes
its data at most three times in a day. So if you are looking to
get more real time visibility into your usage and costs, the
Cost Explorer won’t be sufficient for that. Real time visibility

AWS Cost Explorer – Filter based on resource type and resource tags,
for granular visibility

Use AWS cost explorer, or other paid tools– Tools like
AWS Cost Explorer are designed to give you visibility into
your EKS spend.

5

and alerting may be needed for your use case to avoid being
hit with massive surprise bills due to massive dynamic cost
spikes.

Researching the AWS marketplace will help you find the ap-
propriate tool for your needs.

Use third party tooling – A number of third party
tooling options exist that are designed to provide much
more real time visibility coupled with instantaneous
alerting to help you stay on top of your EKS costs.
Some example tools include:

Datadog

Cloudability

CloudHealth

Getting an in-depth understanding of your EKS cluster re-
source utilization is as critical as understanding your spend,
in order to make prudent optimization decisions. With full
visibility into your cluster utilization, you can identify which
clusters are the most underutilized in terms of their CPU
and Memory resources, and then start taking steps towards
optimizing them.

Understand your usage

There are two important aspects to your cluster utilization
that are both critical to monitor:

6

To get data about your cluster allocation, first ask
Kubernetes to describe a node and it will tell you how much
is allocated vs how much is unallocated.

Kubernetes node resource allocation is largely defined by
the resource request values you set on your pods. ‘Allocated’
capacity in the Kubernetes context is the capacity allocated
across all pods currently deployed on a node based on their
request values. Understanding this gives you visibility into
what resources at each node level may be wasted because
they are not allocated to any workloads.

Utilization of a node is defined in terms of the amount of
CPU and Memory that is currently being used on that node.
Understanding your node and cluster level utilization is criti-
cal in order to truly understand and optimize your Kubernetes
cost spend.

$ kubectl get nodes
$ kubectl describe node NODE_NAME

Query this for all nodes in your kubernetes cluster and you
now have the total allocated vs unallocated capacity for that
cluster.

Allocated vs Unallocated Capacity

Utilized Capacity

7

The simplest way to get the CPU and memory utilization for
your cluster is by using `kubectl top` command.

Use kubectl top across all workloads on the cluster to get
info about all CPU cores and memory currently being utilized,
then sum them up to get the core and memory utilization.

Using open source monitoring tools such as prometheus
or commercial monitoring tools is a better mechanism to
continuously monitor resource utilization of your Kubernetes
clusters. You can then build custom dashboards that give
you visibility into this data at various levels of granularity.

8

Node and pod auto-scaling strategies involve dynamically
adjusting cluster resources based on workload demands to
ensure optimal resource utilization and cost efficiency.

Efficient node & pod auto-scaling

1. Cluster Autoscaler

Enable EKS Cluster Autoscaler to automatically adjust
the number of nodes in your cluster based on pod
resource requests and pending pods in the system.

This ensures that you have sufficient resources to
handle your workloads without wasting money on idle
nodes.

2. Horizontal Pod Autoscaling (HPA)

Implement HPA to automatically scale the number of
replicas (pods) in your deployments based on CPU
utilization or other custom metrics.

Set appropriate thresholds to trigger pod scaling. Avoid
over-provisioning resources and scale down when
demand decreases to save costs during idle periods.

3. Vertical Pod Autoscaler (VPA)

VPA collects resource utilization metrics from
containers running in your pods and uses that
information to recommend or automatically update
the resource requests and limits.

9

4. Pod Resource Requests and Limits

Set accurate resource requests and limits for your
pods. Resource requests define the minimum resources
required by a pod, while limits prevent pods from
consuming excessive resources.

Properly defining these values ensures efficient node
utilization and reduces the risk of overprovisioning.

How long it takes for workload to become ready. Lets say it
takes 5 minutes before app initializes after it launches but
before becomes ready. Due to this amount of time, it creates
availability concern – not being able to meet the demand???

In Amazon EKS clusters, Node Taints and Tolerations are
mechanisms that help control which pods can be scheduled
on specific nodes. Following are some of the ways you can
save cost by using Node Taints and Tolerations.

Node Taints And Tolerations

It helps to right-size the resource allocation to match
the actual resource usage of applications, which can
optimize resource utilization and reduce unnecessary
overhead.

10

Node Taints And Tolerations

By adopting these best practices for Node Taints and
Tolerations in your EKS cluster, you can optimize resource
allocation, automate scaling, and ensure smooth
maintenance operations.

1. Automated Node Scheduling
Use EKS Auto Scaling to dynamically adjust node count
based on workload demands and Taints/Tolerations. This
ensures sufficient capacity while minimizing idle resources.

2. Graceful Node Maintenance
Schedule node maintenance using Node Taints and
Tolerations. Evacuate pods gracefully from nodes
undergoing maintenance, reducing disruptions and avoiding
unnecessary scaling events.

3. Resource Segregation
Use Node Taints to label nodes based on their capabilities
or costs. Deploy pods with matching Tolerations to ensure
resource-intensive workloads run on appropriate nodes,
optimizing resource utilization and cost efficiency.

4. Optimize Node Types
Choose node types based on cost-performance trade-
offs. Utilize Taints and Tolerations to match workloads
with the appropriate instance types, optimizing cost and

11

Image Size Optimization
Minimize container image size to reduce
storage costs and improve deployment
speed.

1

Private Container Registry
Host container images in private container
registry like AWS ECR for security, faster
access and reduced data transfer costs.

2

Following are some of the best practices for container
registry & Images to save cost.

Container Registry & Images

12

Image Tagging Strategy
Use a consistent tagging strategy to manage
versions and avoid using “latest” in production
to prevent unintended deployments.

3

Lifecycle Policies
Implement lifecycle policies to automatically
remove old or unused images and keep
registry clean.

5

Multi-stage builds
Utilize multi-stage builds in your Dockerfiles to
create smaller production-ready images by using
separate build and runtime environments

4

CI optimization
Optimize your CI/CD pipeline to only trigger
builds and updates for necessary changes to
container images.

6

Monitoring and auditing
Regularly monitor and audit your container
registry to identify any unused, outdated, or large
images that can be removed or optimized.

7

By applying these container registry and image-related
cost optimization practices, you can reduce storage
costs, improve deployment efficiency, and enhance overall
performance in your Amazon EKS cluster.

13

AWS spot instances enable you
to take advantage of unused
EC2 capacity at a discounted
price. Utilizing spot instances
as worker nodes for your k8s
cluster may result in significant
cost savings, as spot instances
can be 40-90% cheaper than
the on demand instances.

Here are a few things to keep in mind to make appropriate
usage of spot instances for your Kubernetes cluster.
One fundamental issue with spot instances is that they can
be terminated anytime, and with relatively short notice. This
makes them not an ideal candidate for a certain class of
workloads. Stateful workloads that have a slow start time,
don’t have good horizontal scalability and perform heavy
data processing are typically not good candidates for spot
instances. They will most likely not handle any interruptions
gracefully. You should therefore plan to utilize spot instances
for stateless workloads and for stateful workloads that are
fault-tolerant.

Spot Instances

However, if not used properly, use of
spot instances may result in cluster
and application outages.

14

1.	 When AWS first started making spot
capacity available, price of spot
instances was significantly cheaper
compared to on-demand instances,
~90% lower than on demand on
average. But since then, the high
demand for spot instances has
brought the cost advantage down,
where in some cases it may only be
about 40% cheaper than on demand
instances. It is therefore useful to
do the cost-benefit tradeoff between
spot instances and AWS reserved
instances or AWS savings plan, to see
if the later may provide nearly similar
cost savings but without the node
termination risk.

When requesting for spot instances, use multiple
instance types in your spot instance request to
increase the chances of getting spot instances at
the best possible prices. Using multiple instances
with EKS managed node groups. It’s generally a good
idea to maintain flexibility across a minimum of 10
instance types for every workload. Furthermore,
ensure that all Availability Zones are properly set up
and selected for your workload within your Virtual
Private Cloud (VPC). As the capacity for each instance
type in an Availability Zone varies independently,
embracing instance type flexibility can frequently lead
to increased computational capacity at a lower cost.

2.

15

Set a bid price that is close to the on-demand price
but not too high. A reasonable bid price increases the
likelihood of getting spot instances while still enjoying
significant cost savings.

3.

Use the AWS Spot instance termination handler
to gracefully drain pods before spot instances are
terminated. This ensures that important workloads
are not disrupted and can be rescheduled on other
nodes of the cluster.

4.

16

Pod Disruption Budgets (PDBs) are a Kubernetes
feature that helps ensure the availability of applications
running in a cluster during disruptive events such as
node maintenance, updates, or scaling events. PDBs
are also relevant in the context of cost optimization
because they can help you control costs associated
with managing your EKS cluster.

Here’s how Pod Disruption Budgets can be used for
cost optimization:

Pod Disruption Budgets

1.	 Graceful pod evictions during node
scale-downs

When you scale down your EKS nodes, pods
running on those nodes need to be evicted to make
room for the reduced capacity. By defining a PDB,
you can specify the minimum number of replicas
(pods) that should be running for each application.
This ensures that Kubernetes will not evict more
pods than the PDB allows, preventing unnecessary
pod evictions that might trigger additional node
scaling events and incur additional costs.

17

2. Preventing costly disruptions
 during spot instance terminations

If you are using spot instances to save
costs, there’s a risk that these instances
might get terminated by AWS when the
spot price rises or when AWS needs the
capacity. By configuring a PDB, you can
define the minimum number of replicas
that should be available at any time.
This helps prevent too many pods from
running on spot instances, reducing the
risk of sudden disruptions and associated
downtime costs.

3. Cost-efficient node draining
During node maintenance or updates,
Kubernetes will drain the nodes to move
the pods to other nodes gracefully.
By setting a PDB, you can control the
disruption budget during node draining.
For example, you can specify that a
certain number of replicas for each
application should always be running
on nodes that are not affected by
maintenance. This way, Kubernetes
will prioritize draining other nodes first,
ensuring minimal disruption and potential
cost savings due to more efficient
resource usage.

18

4. Limiting pod replicas for cost
 control:

In some cases, you might have certain
applications or microservices that are
less critical and can tolerate temporary
unavailability. By defining a PDB for
these applications, you can set a lower
minimum number of replicas, allowing
Kubernetes to scale down those pods
and save costs when resources are
needed for more critical workloads.

Pod Disruption Budgets are a powerful
tool that helps you control the
availability and resource usage of your
Kubernetes applications in Amazon
EKS. By leveraging PDBs effectively,
you can optimize costs by minimizing
disruptions, preventing unnecessary
scaling events, and ensuring resources
are used efficiently based on the
priority of your applications.

19

Use AWS Instance Scheduler to automatically turn off and
on your EC2 and RDS instances. This helps save money by
shutting down instances when you don’t need them and
starting them up when you do.

AWS Instance Scheduler

How to Use It

To make the most of AWS Instance Scheduler, you need to
do these steps:

Decide which instances you want to schedule.

Figure out when they should start and stop.

Create a schedule for each instance.

Connect the schedule to the instance.

20

Tips for Success

Schedule instances to run during the times when you
need them the most and stop them when you don’t.

Create different schedules for different types of
instances. For example, development ones can stop at
night, while production ones should keep running.

Use tags to group your instances so you can set
schedules more easily.

Keep an eye on your costs to make sure you’re not
paying for instances you’re not using.

21

AWS Graviton instances,
powered by AWS-designed
custom technology, offer
up to 40% better price
performance compared
to traditional x86-based
instances. They’re a smart
choice for cost-conscious
EKS users.

AWS Graviton instances

Graviton instances shine in compute-intensive tasks,
like web servers, databases, and containerized
applications. They’re also ideal for flexible workloads
that can handle interruptions, such as Spot instances.

Cost-Effective: Graviton instances save money by
delivering strong performance at a lower cost.

Cloud-Optimized: They’re designed specifically for cloud
computing, making them a tailored fit for AWS services
like EKS.

Flexibility: Graviton instances suit a wide range of
workloads, adding versatility to your EKS cluster.

Interruptible: If your workloads can handle occasional
interruptions, Graviton instances can provide cost savings.

Key Benefits

22

GP3 volumes

GP3 volumes are better for EKS cost optimization because
they offer a number of benefits over other EBS volume types.

Cost-Effective Choice: GP3 volumes are a cost-
effective option for EKS because they are 20% cheaper
than GP2 volumes, saving you money on storage costs
for your cluster.

Improved Performance: GP3 volumes offer up to 30%
higher throughput and up to 10% higher IOPS than GP2
volumes. This means your EKS workloads can perform
better without costing you extra.

Automatic Scaling: GP3 volumes automatically adjust
their performance based on your workload’s needs.
This means you won’t pay for more performance
than you actually use, avoiding overprovisioning and
overspending.

Encryption Included: GP3 volumes come with built-in
encryption for data at rest, enhancing security without
added cost.

23

AWS commitment based
discounts are discounts
on on demand pricing
offered by AWS for your
ec2 instances and other
services, in return for a larger
purchase commitment. By
default, and without any pre-
purchase commitment, you
can consume ec2 instances
on demand, or as spot
instances, with the tradeoff
that the spot instances may
get terminated anytime with
relatively short notice.

AWS Commitment
Based Discounts

If you are able to estimate
how much AWS compute
capacity you would need
for a year (or 3 years), then
you can benefit from better
pricing discounts offered
by AWS in return for that
commitment.

Following table describes
various options available
across Reserved
Instances and Savings
Plan and their tradeoffs
wrt on demand instances.
It also provides example
discount values for each.

24

NOTE – the discount values stated here are based on
the discount values provided on the AWS website pricing
data and only provided to give you an idea of what level of
discounts you could get with different options. The actual
discounts will vary depending on your instance type, region
etc. Please refer to the AWS website for the final discount
details.

25

Attributes Standard
Reserved
Instances	

Convertible
RIs	

EC2 Instance
Savings
Plan	

Platform9 KubeVirt

Details Can provide
guaranteed
capacityMust
select Instance
families,
Region, tenancy,
OS upfront.
Flexibility to
change the AZ,
Instance size &
networking type
	

Flexibility to
use different
Instance
families, OS,
tenancies, AZ,
Instance size
& networking
type	

Must select
Instance
families and
Region upfront
but can use
any instance
type within
the familyNot
available in
all regions eg
China	

Most Flexible. Applies
to EC2 instance usage
regardless of Instance
family, Region,
Instance size, AZ, OS
or tenancy.Also apply
to Fargate or Lambda
usageNot available in
all regions eg China

No Commitment. Pay as you go, cancel
anytime

Not
Available. 	

Not
Available. 	

Not
Available. 	

Not Available. 	

1 year commitment, no upfront payment	 37%	 27%	 38%	 27%	

1 year commitment, upfront payment 41%	 31%	 41%	 31%	

3 year commitment, no upfront payment	 57%	 49%	 57%	 49%	

Spot Instances – Spot instances are similar to on-
demand instances in that no upfront commitment
is required. But with spot instances, you do make
availability tradeoffs. More details in the ‘Spot
Instances’ section of this document.

1.

In addition to the above, the following two options are also
available.

26

Attributes Standard
Reserved
Instances	

Convertible
RIs	

EC2 Instance
Savings
Plan	

Platform9 KubeVirt

Details Can provide
guaranteed
capacityMust
select Instance
families,
Region, tenancy,
OS upfront.
Flexibility to
change the AZ,
Instance size &
networking type
	

Flexibility to
use different
Instance
families, OS,
tenancies, AZ,
Instance size
& networking
type	

Must select
Instance
families and
Region upfront
but can use
any instance
type within
the familyNot
available in
all regions eg
China	

Most Flexible. Applies
to EC2 instance usage
regardless of Instance
family, Region,
Instance size, AZ, OS
or tenancy.Also apply
to Fargate or Lambda
usageNot available in
all regions eg China

No Commitment. Pay as you go, cancel
anytime

Not
Available. 	

Not
Available. 	

Not
Available. 	

Not Available. 	

1 year commitment, no upfront payment	 37%	 27%	 38%	 27%	

1 year commitment, upfront payment 41%	 31%	 41%	 31%	

3 year commitment, no upfront payment	 57%	 49%	 57%	 49%	

Enterprise Discount Program (EDP) – AWS offers EDP
as an option on top of purchasing Reserved instances
or Savings plan. EDP usually requires much higher
annual commitment from the customer, and it’s a
use it or lose it model. You pay upfront for a certain
commitment for a year’s worth of usage and you get a
discount that usually applies to any AWS services that
you consume.

2.

27

EKS tuning recommendations involve fine-tuning various
aspects of your EKS cluster and applications to achieve
better resource utilization and cost efficiency.

Tuning Recommendations

Use cost allocation tags to track and analyze
EKS spending by different teams, projects, or
environments. This provides visibility into the cost
drivers, allowing you to optimize costs where needed.

Regularly assess the performance and resource
requirements of your applications to choose the right
EC2 instance types. Right-sizing the nodes helps avoid
underutilization and overpayment for resources.

Regularly monitor your EKS cluster and applications
using tools like Amazon CloudWatch and Kubernetes
monitoring solutions. Continuously review resource
usage patterns and adjust configurations as needed to
achieve cost optimization.

Identify workloads suitable for Spot Instances and
adjust the Spot Instance bid price based on your cost
requirements. Continuously monitor the Spot market
to make informed decisions on Spot Instance usage.

Adjust the configuration of the EKS Cluster Autoscaler
to fine-tune node scaling based on your workload
patterns and resource demands. Experiment with
different settings to achieve the optimal balance
between availability and cost.

28

Regularly review and adjust resource requests and
limits for your application pods. Accurate resource
definitions help Kubernetes allocate resources
efficiently and prevent overprovisioning, leading to
potential cost savings.

By implementing these tuning recommendations, you can
continually optimize the performance and cost-effectiveness
of your EKS cluster, ensuring that you are efficiently using
resources and achieving cost savings where possible.

Using AWS native tools such as AWS Cost Explorer and AWS
Compute Optimizer can be helpful to get hints about what
instances should be optimized.

At the end of the month, AWS sends you a final invoice
listing the details of your usage. The problem with the AWS
invoices is that they show aggregate charges only, with no
information on what specific resources created the charge.
However, AWS also gives you access to the raw data used
to create your invoice. This is where Cost Explorer comes in
play. You can upload the AWS Cost and Usage Report into
an S3 bucket, then provide access to it in your Cost Explorer.
Cost Explorer will then provide a more granular visualization
of your data, where you can drill down to specific instances
that were specifically expensive. You can also view instance
tags here to better understand what that node may be used
for.

29

There are some limitations with using AWS native toolset
however:

Paid tools from
other vendors
such as datadog
may be of benefit
here as some
vendor tools have
the ability to go
a step further
and correlate the
node cost with
the application
running on it.

No node to workload association –AWS Cost Explorer
or Compute Optimizer may show you an increase in
EC2 cost tagged for your EKS workers, but you can’t see
which K8s workloads may be scaling or contributing
the most to the increase, out of all workloads that may
have been provisioned on that node.lower cost.

AWS Cost Explorer data is not real time –Cost Explorer
updates its data three times in a day, at the most.
Unless your Kubernetes environment is not very active,
for debugging most scenarios, you will need more real
time data than this.

Limitations of AWS Native Tools

30

Right size resources
Right sizing of your Kubernetes resources involves performing
a thorough analysis of your application’s resource usage,
across CPU, Memory, Storage, Networking, and then adjusting
the application’s CPU and memory request and limit values,
so that the application only uses the resources it needs. This
avoids over-provisioning to save costs.

One of the most common reasons for application cost overrun
is that the request and limit values set for the application are
too conservative. Typically these values are set based on the
peak requirements of an application, however in 90% of cases
the application may not need these resources. Setting the
application QoS to be Guaranteed (done with request is equal
to limit) in such scenarios will result in resource wastage.

If you’re looking for guidance on sizing pods for an
existing application, skip ahead to the next section.
But if you’re working on a new application that is going
to be deployed to production for the first time, it can
be difficult to know how much CPU and memory it will
need in a real production scenario.

Step 1: Estimate your application’s resource
requirements to right size application pods

31

In these cases, the first step would be to make
an estimate based on the application code and
benchmark it on sample inputs. The best people to
make this effort are the developers working on the
service. Initially, they can benchmark components
of the application separately, and then perform end-
to-end benchmarks as development progresses.
Establishing a ballpark expectation upfront may be
useful to ensure business objectives are met—for
instance, if performance is poor, the service may end
up being too costly to run. However, this estimate
should be checked with benchmarking as the project
progresses, in order to avoid discovering major
overruns when going into production and opening up
your application to customers.

Use these estimates to set the appropriate request
and limit values for your k8s service.

This first estimate needs to be conservative; we
recommend that you request more than you think the
service will need. If you request less CPU than needed,
performance issues may arise due to throttling. If you
request less memory than the application regularly
needs, then Kubernetes will evict the pods often. In the
worst case, the kernel may kill container processes if
they are using too much memory (OOMKilled).

Once you’ve made a first estimate, you can
monitor your containers’ resource usage and make
adjustments from there.

32

As a way to make it easier to rightsize pods, the
Kubernetes project launched a project called the
Vertical Pod Autoscaler (VPA). The VPA collects CPU
and memory usage telemetry over time and uses
that data to recommend appropriate values for your
containers’ CPU and memory requests and limits.

Step 2: Further optimize the right sizing process

The Kubernetes Vertical Pod Autoscaler

Making a best-effort guess about the resource requirements
of your application is a step in the right direction, but over
the long run, you’ll want to use tools like the Kubernetes
Vertical Pod Autoscaler and historical data to rightsize your
workloads.

33

This looks like a good starting point. But in order
to decide if the VPA is the right solution for your
workloads, it is important to understand how it works,
how it makes its recommendations, and some of its
current limitations.

Another factor to take into account is that, by default,
the VPA makes recommendations of your containers’
future resource usage based on historical data
observed over a rolling window. This may work well for
workloads with stable usage of CPU or memory, but
it wouldn’t work as well for workloads with different
usage patterns, like those with periodic spikes and
dips in CPU usage. To mitigate this, VPA 0.10 shipped
with support for alternative recommenders, but this
still introduces the overhead of having to implement
custom recommenders for different workloads’
resource usage patterns.

The VPA currently uses the Kubernetes Metrics
Server, a daemon that collects resource metrics from
kubelets and exposes them in the Kubernetes API
server. This means that in order to use the VPA, you
would need to deploy and operate the metrics-server
Deployment in your Kubernetes clusters.

As long as you’re aware of these limitations, the VPA
can be a good way to start getting recommendations
based on production data.

34

Step 3 Right size your replica count

Challenges with rightsizing

When you are able to horizontally scale pods, you have a
choice of doing say 10 replicas that are small, or 3 larger
replicas, or 1 large replica. Making the right decision here
has direct correlation to avoiding wasted resources.

One challenge with using VPA is that it can not resize
workloads in place. VPA needs to restart your workload in
order to make its changes effective, which may result in an
outage. So this introduces an availability concern that you
must address.

35

Many of the strategies around EKS cost optimization
mentioned above have one or more of the following
limitations:

Optimizing EKS Costs using Real-Time
Auto-sizing

1.	 Level of automation – Strategies that involve reading
reports from observability tools to identify over-
provisioned resources require a lot of manual back
and forth work

2.	 Pod disruption impact – Many pod right sizing tools
or manual ways to perform pod rightsizing require
taking pods down that creates pod and application
downtime. Your application may or may not be able
to tolerate this. Using spot instances for EKS cost
savings also has this downside.

3.	 Need to convince developers to change request
values – Making changes to requests of your app
requires approval from your developers first. Many
developers are resistant to a tool or a person making
changes to request values that they have tuned
and tweaked after months of experimenting with
application performance.

Another approach to EKS cost optimization is by using a tool
that will work completely behind the scenes and optimize

36

your EKS costs by real-time auto-sizing and allocating
resources to your Kubernetes worker nodes only based
on the current resource demand. This is the approach that
Elastic Machine Pool (EMP) takes. EMP makes use of proven
virtualization best practices to allocate resources to your
EKS workers on demand based on their needs. EMP can also
‘live migrate’ your EKS workers behind the scenes so that
allocating required resources to your applications will never
cause pod disruption or downtime. Using this approach, EMP
is able to provide to you savings that are similar to using
spot instances, but without the risk of instance downtime.

It can be easy to overlook your AWS EKS spend when you are
in the early adoption phase. However, as your EKS adoption
grows rapidly, costs can quickly skyrocket. We therefore
recommend employing proper cost optimization framework
early on, once you make an organization wide decision to
standardize on AWS EKS as your Kubernetes platform of
choice.

Summary

Following these recommendations and creating a well
defined plan around EKS cost optimization will result
in significant savings and predictability for your EKS
environment.

37

About Author

Madhura
Maskasky
Co-founder and VP Product,
Platform9

Madhura leads Product Management at Platform9. Before
co-founding Platform9, Madhura spent 7 years at VMware
Engineering, where she grew to be technical lead for several
key products including vCloud Director, Update Manager
and Config Control. She helped spearhead vSphere’s
transformation into a policy driven product suite, working
broadly across groups to pull together the vision.

https://www.linkedin.com/in/madhuramaskasky/

38

https://www.linkedin.com/company/platform9-systems/

Schedule your personalized
EKS cost savings assessment:
Learn how to improve your cloud compute
utilization with automation and zero interruption.

Book a meeting

39

Headquarters: 84W Santa Clara St Suite 800, San Jose, CA
95113.

India office: 7th Floor, Smartworks M Agile Building, Pan
Card Club Road, Baner Pune, 411045 Maharashtra, India.

Phone:
+1 650-898-7369

Website:
https://platform9.com

Email:
info@platform9.com

